Mechanically evoked itch in humans.

نویسندگان

  • Miyuki Fukuoka
  • Yoshiki Miyachi
  • Akihiko Ikoma
چکیده

When a newly developed experimental method to vibrate vellus hairs on human skin was applied to the face and arm in healthy subjects, intense itch was reproducibly induced on the face, but not on the arm, without any flare reactions. In contrast to histamine-induced itch, mechanically evoked itch was not characterized as burning or stinging by any subjects, and was resistant to histamine H1-receptor antagonists. When the stimulation was continued for 10 min, mechanically evoked itch reached the maximum intensity within 10 s, but gradually attenuated after 60 to 90 s and was rarely perceivable at the end of stimulation. When the stimulation was discontinued at 90 s, mechanically evoked itch rapidly attenuated after the end of stimulation, but took more than 10 min before it completely diminished. These results indicate a possible involvement of C-tactile neurons in mechanically evoked itch because they have consistent characteristics such as low mechanical thresholds, intermediate adaptation, after discharge, favorable response to slowly moving stimuli, and fatigue during repeated mechanical stimulation, although it needs to be confirmed by future microneurographic studies. Touch-alloknesis was present in the adjacent skin area until mechanically evoked itch completely diminished, supporting the hypothesis that itch sensitization can be caused by a continuous activation of peripheral itch neurons whether or not they are histamine-sensitive C nerves. In conclusion, this study provides direct evidence of mechanosensitive nerves involved in itch in human skin. The purity of mechanically evoked itch without any pain-related sensory components is a major advantage for investigating the differentiation of itch from pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically evoked itch in humans.

We compared itch sensations and axon reflex flare induced by transcutaneous electrical (0.08-8 ms, 2-200 Hz) and chemical (histamine iontophoresis; 100 microC) stimulation. Stimuli were applied to non-lesional volar wrist skin in 20 healthy human subjects and 10 patients with atopic dermatitis. Intensity of evoked itch and pain sensations were rated on a numerical rating scale (NRS) of 0 (no se...

متن کامل

Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors.

Cowhage spicules provide an important model for histamine-independent itch. We determined that the active component of cowhage, termed mucunain, is a novel cysteine protease. We isolated mucunain and demonstrate that both native and recombinant mucunain evoke the same quality of itch in humans. We also show that mucunain is a ligand for protease-activated receptors two and four. These results s...

متن کامل

A human surrogate model of itch utilizing the TRPA1 agonist trans-cinnamaldehyde.

The thermoreceptive transient receptor potential ankyrin 1 (TRPA1) is important in the transmission of itch, and its agonist trans-cinnamaldehyde has occasionally been reported to be a pruritogen in humans. However, no studies have accurately quantified the capabilities of trans-cinnamaldehyde to induce itch and related dysesthetic sensations. The present study examined alterations in somatosen...

متن کامل

In vivo responses of cutaneous C-mechanosensitive neurons in mouse to punctate chemical stimuli that elicit itch and nociceptive sensations in humans.

Native cowhage spicules, and heat-inactivated spicules containing histamine or capsaicin, evoke similar sensations of itch and nociceptive sensations in humans. In ongoing studies of the peripheral neural mechanisms of chemical itch and pain in the mouse, extracellular electrophysiological recordings were obtained, in vivo, from the cell bodies of mechanosensitive nociceptive neurons in respons...

متن کامل

Evoked itch perception is associated with changes in functional brain connectivity

Chronic itch, a highly debilitating condition, has received relatively little attention in the neuroimaging literature. Recent studies suggest that brain regions supporting itch in chronic itch patients encompass sensorimotor and salience networks, and corticostriatal circuits involved in motor preparation for scratching. However, how these different brain areas interact with one another in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pain

دوره 154 6  شماره 

صفحات  -

تاریخ انتشار 2013